Distributed One-Stage Hessenberg-Triangular Reduction with Wavefront Scheduling
نویسندگان
چکیده
منابع مشابه
Distributed One-Stage Hessenberg-Triangular Reduction with Wavefront Scheduling
A novel parallel formulation of Hessenberg-triangular reduction of a regular matrix pair on distributed memory computers is presented. The formulation is based on a sequential cache-blocked algorithm by Kågström, Kressner, E.S. Quintana-Ortí, and G. QuintanaOrtí (2008). A static scheduling algorithm is proposed that addresses the problem of underutilized processes caused by two-sided updates of...
متن کاملA Householder-based algorithm for Hessenberg-triangular reduction∗
The QZ algorithm for computing eigenvalues and eigenvectors of a matrix pencil A − λB requires that the matrices first be reduced to Hessenberg-triangular (HT) form. The current method of choice for HT reduction relies entirely on Givens rotations partially accumulated into small dense matrices which are subsequently applied using matrix multiplication routines. A non-vanishing fraction of the ...
متن کاملBlocked Algorithms for the Reduction to Hessenberg-triangular Form Revisited
We present two variants of Moler and Stewart’s algorithm for reducing a matrix pair to Hessenberg-triangular (HT) form with increased data locality in the access to the matrices. In one of these variants, a careful reorganization and accumulation of Givens rotations enables the use of efficient level 3 BLAS. Experimental results on four different architectures, representative of current high pe...
متن کاملParallel Reduction of a Block Hessenberg-Triangular Matrix Pair to Hessenberg-Triangular Form—Algorithm Design and Performance Results
The design, implementation and performance of a parallel algorithm for reduction of a matrix pair in block upper Hessenberg-Triangular form (Hr, T ) to upper Hessenberg-triangular form (H, T ) is presented. This reduction is the second stage in a two-stage reduction of a regular matrix pair (A, B) to upper Hessenberg-Triangular from. The desired upper Hessenberg-triangular form is computed usin...
متن کاملEfficient Algorithm for Simultaneous Reduction to the m-Hessenberg–Triangular–Triangular Form
This paper proposes an efficient algorithm for simultaneous reduction of three matrices. The algorithm is a blocked version of the algorithm described by Miminis and Page (1982) which reduces A to the m-Hessenberg form, and B and E to the triangular form. The m-Hessenberg– triangular–triangular form of matrices A, B and E is specially suitable for solving multiple shifted systems. Such shifted ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2018
ISSN: 1064-8275,1095-7197
DOI: 10.1137/16m1103890